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Abstract

In segmentation of remotely sensed images, the number of pixel classes and their spectral 
representations are often unknown a priori.  Even with prior knowledge, pixels with spectral 
components from multiple classes lead to classification errors and undesired small region 
artifacts.  Coarseness regulation for segmented images is proposed as an efficient novel 
technique for handling these problems.  Beginning with an over-segmented image, perceptually 
similar connected regions are iteratively merged using a method reminiscent of region growing, 
except the primitives are regions, not pixels.  Interactive coarseness regulation is achieved by 
specifying the area α of the largest region eligible for merging.  A region with area less than α is 
merged with the most spectrally similar connected region, unless the regions are perceived as 
spectrally dissimilar.  In convergent coarseness regulation, which requires no user interaction, α
is specified as the total number of pixels in the image, and the coarseness regulation output 
converges to a steady-state segmentation that remains unchanged as α is further increased.  By 
applying convergent coarseness regulation to AVIRIS, IKONOS and DigitalGlobe images, and 
quantitatively comparing computer-generated segmentations to segmentations generated 
manually by a human analyst, it was found that the quality of the input segmentations was 
consistently and dramatically improved.

1. Introduction

Segmentation of images into regions containing pixels that logically belong together is an 
important early step in image analysis and interpretation.  This paper uses a three-stage approach
that involves pre-processing followed by conventional segmentation and post-processing.  The 
goal of pre-processing is to produce an image suitable for both manual and automated 
interpretation. Typical pre-processing techniques include range clipping / quantization (for 
brightness-contrast adjustment), despeckling ([1]), and luminance-to-brightness mapping (to 
compensate for nonlinearities between sensed luminance and perceived brightness).

Most segmentation research has been focused on development of different families of 
image segmentation algorithms.  These can be broadly categorized as pixel classifiers (e.g., [2]-
[3]), region growers (e.g., [4]), edge-based methods (e.g., [5]) and evolving contour methods 
(e.g., [6]-[7]).  These algorithms mostly require one or more input parameters for which 
appropriate values are unknown in advance.  This impasse to fully automated processing is 
addressed in this paper by over-segmenting the images (which is easy to do), and then subjecting 
the results to a novel process referred to herein as coarseness regulation (discussed in Section 2).  
A robust method for image segmentation quality assessment is reviewed in Section 3 and then
used in Section 4 to compare image segmentation quality before and after coarseness regulation.

1 This work was performed under the auspices of the U.S. Department of Energy by the University of 
California, Lawrence Livermore National Laboratory, under Contract No. W-7405-Eng-48.
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2. Coarseness Regulation

Coarseness regulation seeks to eliminate regions with less than α pixels by merging each 
such region with the most spectrally similar connected region.  However, regions are not merged 
if the spectral difference between them exceeds ∆s.  Merged region i can be characterized by the 

set ri =
∆

 {ID’s of unmerged regions contained in merged region i}. Initially, there are n unmerged 

regions, ri = {i} for i = 0 … n−1, and the ID mi of the merged region that contains unmerged 

region i is mi = i.  Let rj be the most spectrally similar region connected (typically 4-connected) to 

region ri. The spectral difference between ri and rj is taken to be || s(ri) − s(rj) ||, where s(ri) is 

the “spectral signature” of region ri (i.e., the mean of pixel spectra for pixels in ri). The sets c(ri)

of ID’s of merged regions connected to ri are initialized by connectivity analysis on the initial set 

of unmerged regions.  Coarseness regulation can be summarized as follows:

for  i = 0 … n−1
1. skip ri if previously absorbed or too large:

if mi ≠ i or  area(ri) > α then  continue

2. grow merged region from seed region ri:

while (1)
a. find most spectrally similar region connected to ri:

j ← arg min
k ∈ c(ri)

|| s(ri) − s(rk) || 2

b. if  || s(ri) − s(rj) ||
2 > ∆2

s   then exit while loop

c. absorb rj into ri
d. if  area(ri) > α  then  exit while loop

The process of absorbing rj into ri is computationally efficient because region connectivity 

analysis is performed only once at initialization time.  The algorithm then only needs to maintain 
lists of region ID’s:

· ri ← ri ∪ rj

· s(ri) ←
area(ri) s(ri) + area(rj) s(rj)

area(ri) + area(rj)

· area(ri) ← area(ri) + area(rj)

· ∀k ∈ rj,  mk ← i

· c(ri) ← c(ri) ∪ c(rj)  with  i and j removed

· ∀k ∈ c(ri),  replace j with i in c(rk)

· c(rj) ←  { }
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Coarseness regulation applies to both monochrome and multi-band images (s(ri) can be 

either scalar or vector).  It has two parameters: α and ∆s. ∆s is not user-specified − its value is 

based on the limit of human ability to perceive contrast in display brightness (e.g., in 8-bit 
images, ∆s ≈ 4 is appropriate). In interactive coarseness regulation, α is user-specified, whereas 

in convergent coarseness regulation, α is set to the number of pixels in the image.  In convergent 
coarseness regulation (which has no user-specified parameters), the output converges to a steady-
state segmentation that remains unchanged as α is further increased.

Coarseness regulation can be performed in steps. The area coarseness regulation step 
factor ∆A = 2,3… specifies the manner in which the minimum allowable region area increases 

from step to step. On step k, the minimum allowable region area is αk = (∆A) k ≤ α, k = 1,2… .

Stepwise coarseness regulation guarantees segmentations of constant or increasing coarseness for 
increasing values of α across powers of ∆A. This intuitively satisfying property is not inherent in 

one-step coarseness regulation (for which it is theoretically possible to end up with more regions 
when α increases). Moreover, for sufficiently small values of ∆A (say ∆A = 2 as in Section 4), 

coarseness regulation is much less likely to suffer from reductions in computational efficiency 
due to the overwhelming combinatorics associated with pairs of connected regions.

3. Segmentation Quality Assessment

In the absence of ground truth, the best way to build a segmentation reference is for a 
trained human analyst to use an image annotation tool to draw boundaries of perceived regions 
with a mouse.  Image segmentation quality can then be assessed by measuring the disparity 
between manually generated and computer-generated region boundaries. It has been empirically 
established that the most reliable measures of segmentation quality take into account both
locations and orientations of boundary pixels.

Consider a manually generated region map with NP > 0 region boundary pixels p∈P, and 

a computer-generated region map with NQ > 0 region boundary pixels q∈Q.  Then, let p(q) be the 

pixel p∈P closest to q, and let q(p) be the pixel q∈Q closest to p.  The following measure of 
disparity d(P,Q) ∈ [0,1] between P and Q has been found to produce segmentation quality 
assessments that are highly consistent with human perception ([8]):

(1) d(P,Q)  =  1 − min





1

NP
∑
p∈P

s(p,Q) ,
1

NQ
∑
q∈Q

s(q,P)  

(2) s(p,Q)  =  

 cosnθ [p,q(p)] || q(p) − p || ≤ ∆

0 otherwise

θ [p,q] is the phase disparity (disparity in boundary direction) between boundaries at pixels p and 
q.  It varies from 0 (for angles that point in the same or opposite directions) to π/2 (for angles that 
point in orthogonal directions).  Quality assessments most consistent with human perception were 
observed for association distances ∆ ≈ 10 between pixels p and q combined with phase 

modulation orders n for which cosnθ = 0.5 for θ  from roughly 5° to 10° (i.e., n values from 
roughly 50 to 200).  The experiments in Section 4 use ∆ = 10 and n = 100.
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Note that disparity values range from 0 to 1, but take on non-intuitive absolute values that 
mostly reflect how the disparity formula parameters were specified.  So although absolute
disparity values have limited meaning (e.g., a value near 0 does not necessarily indicate a good 
match, and a value near 1 does not necessarily indicate a poor match), relative values of disparity
can indeed be used to rank segmentation quality as a function of coarseness.

4. Experiments

Fig.1 shows (a) a rural scene (courtesy of AVIRIS) (b) an aircraft scene (courtesy of 
DigitalGlobe) and (c) a facility scene (courtesy of IKONOS).  The red region boundaries were 
drawn by a human analyst.  The orange region boundaries were generated by computer 
segmentation and various degrees of coarseness regulation (specifically no coarseness regulation, 
interactive coarseness regulation with a minimum region area of 100 pixels and convergent 
coarseness regulation).  The images were pre-processed with three, zero and five despeckling 
iterations respectively ([1]).  The pre-processsed images were subjected to K-Means pixel 
classification ([9]).  Over-segmentation was achieved by using K = 10.  The computer-generated 
segmentations qualitatively appear to more closely resemble the manual segmentations as 
coarseness increases.  Fig.1(d) shows plots of disparity (d in equation (1)) vs. coarseness (α).  
The results quantitatively confirm the trend towards smaller disparity between manually 
generated and computer-generated segmentations as coarseness increases to convergence.

5. Summary and Conclusions

Convergent coarseness regulation has been introduced as a post-processing technique that 
eliminates the need for human analysts to interactively select values for image segmentation 
algorithm parameters.  It thus enables systems to be developed for which there are requirements 
to automatically segment large amounts of imagery acquired by various imaging sensors at 
various times.  Convergent coarseness regulation results are amazingly insensitive to the initial 
degree of over-segmentation.  However, image pre-processing can still typically have a profound 
effect on segmentation results.
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Fig.1 Manual (red) and computer-generated (orange) region boundaries for (a) rural scene 
(courtesy of AVIRIS)  (b) aircraft scene (courtesy of DigitalGlobe)  (c) facililty scene 
(courtesy of IKONOS).  Top right – no coarseness regulation.  Bottom left – interactive 
coarseness regulation (minimum region area = 100).  Bottom right – convergent 
coarseness regulation.  (d)  Plots of disparity between manual and computer-generated 
segmentations vs. degree of coarseness.


